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Review and Related Work



Review:
● Two approaches to localization

○ Metric

■ Estimate continuous 

position

○ Appearance/Topological

■ Classify scene to limited 

number of discrete 

locations



What does this have to do with search?
● Appearance/Topological 

localization can be presented as a 

search problem!

○ Database of known locations, 

given an input image, where 

are we?

■ Efficient retrieval is 

necessary, usually really 

large database



Related Work:
● Scene Coordinate Regression 

Forests

○ Use depth images to map 

each pixel from camera to 

global 

○ Train a regression forest to 

regress these labels given an 

RGB-D image. 

○ Limited to indoor use in 

practice (IR interference)



Related Work:
● Feature extraction and matching as in [1, 2, 3, 4]

○ (Generally) extract various types of image features

■ Match these features with those in the database with 

tagged known location to return position
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Problem Statement and Overview of 
Approach



Problem Statement:
● Estimate the 3D position and orientation of the camera, given 

a single monocular image taken from a large previously 

explored area

● Green
○ Training

● Blue
○ Testing

● Red
○ System 

output



Overview of Approach:
● Perform end-to-end supervised learning with euclidean loss 

to regress 6-DOF pose.

○ Does not require large landmark database (instead it 

learns robust high level features to regress 6-DOF pose.)



Dataset



Dataset:



Details and Issues with Approach



Details of Approach (Neural network):
● PoseNet is a modified version 

of Googles 22 layer Inception 

Network (27 if counting 

pooling layers)

○ Includes 6 ‘inception 

modules’ and 2 additional 

intermediate classifiers 

which are discarded 

during testing



Details of Approach (Neural network):
● Modifications to LeNet

○ Replace all softmax classifiers with affine regressors

○ Insert another fully connected layer with size 2048 before 

the final regressor (used for generalization exploration) 

○ At test time, normalize quaternion orientation vector to 

unit length

● Results in a 23 layer (28 layers including pooling) network



Details of Approach (Neural network):
● Euclidean Loss / Affine Regressor layers

layer {
  name: "loss3/loss3_xyz"
  type: "EuclideanLoss"
  bottom: "cls3_fc_xyz"
  bottom: "label_xyz"
  top: "loss3/loss3_xyz"
  loss_weight: 1
}

layer {
  name: "loss3/loss3_wpqr"
  type: "EuclideanLoss"
  bottom: "cls3_fc_wpqr"
  bottom: "label_wpqr"
  top: "loss3/loss3_wpqr"
  loss_weight: 500
}



Details of Approach (Neural network):
● Learning location and orientation

○ Train network on Eucliden loss

○  Found that training on just position or orientation 

performed poorly compared to training on both 

simultaneously 



Details of Approach (Neural network):
● Learning location and orientation

○ Balance      must be struck between orientation and 

translation penalties.

○ Optimal      given by ratio between expected error of 

position and orientation at the end of training (not 

beginning



Details of Approach (Neural network):
● PoseNet model was implemented in Caffe and trained using 

stochastic gradient descent 

○ Base learning rate was 10^-5

■ Reduced by 90% every 80 epochs

○ Momentum of 0.9

○ Batch size of 75

○ Subtract separate image mean for each scene



Issues with Approach:
● Starting network weights (LeNet pretrained on XX) are very 

important for PoseNet performance



Issues with Approach:
● No output uncertainty produced by network

● Relatively large error compared to SCoRe Forest (indoors - as 

SCoRe Forest cannot handle the large outdoor datasets)

● Even utilizing transfer learning yields semi-long training 

times (3-6 hours on Nvidia Titan X)



Results



Results:



Results:



Conclusion



Conclusion / Summary:
● PoseNet is an end-to-end 6DOF pose regression convnet

● 5ms run-time, 50MB total storage space

● Large Scale indoor and outdoor relocalization

● Release of public dataset consisting of over 10,000 pose 

annotated images



Thanks!

Questions?



Quiz



Quiz:
1. PoseNet is able to output uncertainty

a. True

b. False

2. PoseNet is based off which of the following models?

a. VGG16

b. AlexNet

c. LeNet

d. ResNet


